Relation Between b_{sp} and PM Presented by: Willard Richards Siana Alcorn Sonoma Technology, Inc. Petaluma, CA Presented to: CRPAQS Data Analysis Workshop Sacramento, CA March 9-10, 2004 # Relation Between Ambient and Measured b_{sp} - Sample airflow was heated only when the RH in the scattering chamber exceeded 65% and the heating kept the RH from exceeding about 72%. - Heater successfully protected the nephelometer from fogs. ## Relation Between Ambient and Measured b_{sp} - No size selective inlet. - PM_{2.5} sampling efficiency believed to be good, but coarse particle sampling efficiency not characterized. ### During Winter in SJV - Dust is suppressed, so the fine particle tail of the coarse particles makes a smaller contribution to the measured b_{sp}. - When the RH in the scattering chamber is less than 65%, the light scattering efficiency from regression against PM_{2.5} is typically 5 to 6 m²/g. #### Effect of RH The following slide shows the light scattering efficiency as a function of RH in the scattering chamber calculated from the measured b_{sp} and BAM PM_{2.5} at Angiola. ### Remedy? - Decreasing the RH threshold for heating has been mentioned. - Perhaps that would only move the range of variable results to lower RH, which would affect more of the data. - I favor increasing the residence time between drying and measurement and stronger heating. ### During Summer or in Desert - PM_{2.5} can be attributed to "smog" and the PM_{2.5} tail of the "dust" particles. - The scattering efficiency of the "dust" PM_{2.5} is roughly 1 m²/g, compared to 5 to 6 m²/g for the "smog" PM_{2.5}. - Scatter diagrams of b_{sp} versus PM_{2.5} look as if produced by a shotgun. ### During Summer or in Desert - PM_{2.5} concentrations do not exceed standards in the SJV during the summer, so the ability to predict PM_{2.5} from b_{sp} data is not as crucial as in the winter. - All field studies have found that b_{sp} is not well correlated with coarse particle concentrations. #### Regression in Summer or Desert - $b_{sp} = A + E_{2.5} PM_{2.5} + E_C PM_C$ - This equation assumes A, E_{2.5}, and E_C are constant. - In fact, E_{2.5} decreases with increasing PM_C/ PM_{2.5}. - The regression analysis accounts for this by assigning E_C a negative value. #### Regression Analyses • $b_{sp} = [Esf + (Esc - Edc)Fsc]Mf$ [(Edf - Esf)Fdf + Edc]Mc Fsc Fraction of "smog" in coarse size Fdf Fraction of "dust" in fine size E Light scattering efficiencies s "smog" d "dust" f fine c coarse White et al. (1994) Atmos. Env. 28, 909 #### Recommendations - It is recommended that the b_{sp} data be used for PM model validation. - It should be possible to calculate b_{sp} from the simulated PM data. - When the RH in the scattering chamber is greater than 65%, the calculated b_{sp} should be equal to or less than the measured b_{sp} .